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SELECTED FORMULAE

Coordinate transformations

Cylindrical — rectangular (x,y, z) = (rcos ¢, rsing, z)

Spherical — rectangular (x, y, z) = (rsinf cos ¢, rsin @ sin ¢, r cos )

Differential operators

Gradient Vf= afA—l—gA—Fa—f
ay 0z
Divergence V-F= aa}; %Fy + %};z (Rectangular)
19 1 9F, aF o
-F = E 1 |
\% - (rF,) + - - 90 + (Cylindrical)
X vy Z
Curl VxF = a% % %
F, F, F,
Line integral
1
1
Path ¢ /F Ll = / F(I(s)) - ) g
¢ 0 ds

Surface integrals

Rectangular surface (z = 0 plane) / / ~dA = / / (x,y,0) - (dedy z)
27
Circular surface (z = 0 plane) // F.-dA = / / F(r,¢,0) - (rdodrz)
A o Jo
L 27
Cylindrical surface (no end faces) // F.dA = / / F(R,¢,2) - (RdpdzT)
A o Jo
2w ™
Spherical surface // F.dA = / / F(R,¢,0) - (R2 sin 6 df d¢ f)
A o Jo

Volume integrals

Cube ///pdv—/a/a/ap(ac,y,z)dxdydz
Cylinder ///pdv—/ /QW/ 2)rdodrdz
Sphere ///pdv—/ / / Yr? sin 6 df do dr
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ELEN30011 Electrical Device Modelling

Flux densities, fields and forces

Electric flux density and field
Magnetic flux density and field
Electric force and field

Magnetic force and flux density

Maxwell’s Equations

Page 8 of 14

D=¢cE
B=yuH
F=qgE
F=gvxB

Gauss (Electric) V-D=p // D.dA = /// pdv
A vol(A)
Gauss (Magnetic) V-B=0 // B-dA =0
A
Faraday VXE=—— j{ E~d1:—2//B~dA
0(A) ot JJa
D
Ampere VXH:J—i—a— j{ H~dl://J-dA+g//D~dA
ot o(A) A ot A
Conservation Laws
Energy E=-VV V:—/Eodl
¢
Charge V-J=-— // JdA——g/// dv
& B ot area(v) B ot v 4
Conductors
Current 1= // J-dA
A
Voltage v=— /E -dl
¢
Ohm’s Law J=0cE v=Ri
2
Skin depth 0=
Vwpo
Permittivity (free space) € =885x 10712 Fm™!
Permeability (free-space) fo =47 x 1077 Hm™*
Conductivity (copper) oc=58x10" (Qm)™*
Permittivity (copper) e=¢=883x10""2? Fm™
Permeability (copper) = =41 x1077 Hm™
Charge redistribution time Tcr = £
o
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ELEN30011 Electrical Device Modelling

Conductors (continued)

_ R ff E-dl
esistance - ffA cE - dA
R /L dx
0 U(x) A(I)
L
=73
- JI,V - Edv
Capacitance (linear) C=- fg E-dl
e A
U=

Divergence in cylindrical coordinates

10

S ror

1 0F, OF.,
B+ 258 T 0,

V-F

A possibly useful formula

Lo
2—22 20|b—2z b4z
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Conversion between Cartesian, cylindrical, and spherical coordinates

From
Cartesian Cylindrical Spherical
T = pcosyp x = rsinfcosp
Cartesian NA y = psing y = rsinfsingp
z=2z z=rcosf
p=y/2* +¢ p=rsinf
Cylindrical qp=m__¢ml(g) NA p=0p
To z z=rcosf
z=2z
r=\@++72 | = P2
z
Spherical G=arccos(-) _ (f NA
P ; # = arctan z)
ga:arct.an(—) =y
z
Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of destination
coordinates
Cartesian Cylindrical Spherical
% = cospp — sinp@ | X = sin b cos pF + cos fcos pb — sin @
Cartesian NA ¥ =singp +cos@@ | § = sin fsin ¢F + cos Osin pf + cos PP
e z = cosfr — sin 60
p= X+ yy
VI P p = sin B + cos 69
Cylindrical | . _ —yx + ¥ NA p=¢
NCETT z = cos fr — sin 00
g=8
. xX+yy+ 22 L.
S VEAER LT
x = —
. (zx+yy)z- (2 +97)% . +_
Spherical | @ = 5_ P —pE NA
VEF P+ 2+ 9——m
.  —yx+zy N
Pm — =9
\/:i+?

Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of source coordinates

Cartesian Cylindrical Spherical
BRI CET i T ) BN
2= 2L *T e W
v: g - o ~
e +y . %6+ 80 i=y(\/z!+?r+zﬂ)+z 2t 4+ 20
VIR VETEVE P+ 2
i=12 | @ — T+ y0
R T
. pi+20
P = cos pX + singy . Vit
Cylindrical | ¢ = — sin gX + cos ¢y NA =@
E=% - 2F — pb
BRGET
£ = sinf (cos pX + sin @y) + cos0% | F = sin0p + cos 02
Spherical | @ = cos 0 (cos ¢X + sinpy) — sin 0z | 6 = cosOp — sin 0z NA
P = —singx + cos gy p=¢




Table with the del operator in cartesian, cylindrical and spherical coordinates

Operation Cartesian coordinates (v, y, ) Cylindrical coordinates (p, ,2) | Spherical coordinates (r, 8, g), where @ is the polar angle and ¢ is azimuthal
A vector field A Ak + Ay + A Ap+ A+ Ak A+ A0 + A,
af af . of af . 198f . of. 8] 18f » 1 af .
Gradient 7/ = +Ey+8— 8pp+;£w+a = +—§9+ mawv
; A, 04,  9A, 10(p4) 104, 1 2(F*4,) 1 9 1 04,
D v-A + — - e R i s S
dark i 9z oy | o: s Tehg " a = o T remaoe 0t S,
0A; 04, (1&_84»). 1 (a aA.).
( y _ﬁ) p Oy 8z rsind w(Awsinﬂ) dp i
24, a4, 04, 0A.\ . l(;%_i )
cunved (8:: _8=) +(ﬁ"a_p)"" tr\mooy & ™)0
24, oA, 1(8(pd;) 04, . 1 (i - M) 5
ba—% ) 5o %) tela A )?
i #f Pf &f 18( ) 18f &f 18( Bf) 1 ( a;) 1
Laplace operator V-/'= Af 8:,"'@ 97 Y pzwn'*a,z 2 Or rz&r +r2 008 sin 380 +r’sin’0
Vector Laplacian 7°A = AA VA %+ VIAy + VA& View by dicking [show] —  [show] View by dicking [shaw] fshowd
Material derivative'/ (A-7)B | A-VB,x+ A - VB,’.' +A-VB.2 View by dicking [shaw] — [show] View by dicking fshaw] [show]
Tensor divergence V- T View by dicking [shaw] [show] View by dicking [chaw] — [show] View by cicking fhaw] {show]
Differential displacement al dzx +dyy +dzz dpp+ pdpp +dzz drf +rdf@ + r sinfdp @
dydzx pdpdzp rsinfdfdy ¥
Differential normal area &5 +dzdzy +dpdzp +rsin@drde @
+dzdyz + pdpdpz +rdrdd
Differential volume 47" dzrdydz pdpdpdz +* sin@dr df dp
Non-trivial calculation rules [edt]
l.divgrad f=V.-Vf=V3f
2curlgrad f=VxVf=0
3 diverlA=V-(VxA)=0
4.curl curlA = V x (V x A) = V(V - A) — V? A (Lagrange's formula for del)

5.V3(fg) = fVig+2Vf-Vg+ gVif

dA = /r* sin® (8)d8d¢ — r* sin(6)dode




Formulas and Identities
Tangent and Cotangent Identities Half Angle Formulas (alternate form)

sin 0 cosf _
tan@ = coth =— sinQ:J_r 1-cosb sin’ :l(l—cos(29))
cos@ sinf 2 2 2

Reciprocal Identities

1 1
_ 1 a1 cosQ:i +cosf coszez—(l+cos(29))

cscO =— sinf = 7 B

sin @ csco

- 1- 20

secH = 1 cosf = 1 tang =% 1-cos0 tan2 = i)

cosB sech 2 1+cos@ 1+cos(29)

1 Sum and Difference Formulas

cotl = tanf = ) ) )

tan 6 cot6 sin(a + ) =sina cos f +coso sin f3

Pythagorean Identities

cos(a ) =coso cos f Fsina sin 3
sin”0 +cos* 0 =1

tano + tan
tan’ 0 +1=sec’ 0 tan(aiﬁ)zlitanatanﬁ
1+cot’@ =csc* 0 Product to Sum Formulas
Even/Odd Formulas sina sin 8 _1 cos(a—B)—cos(a+
sin(—0) = —sin6 csc(—0) =—cscH 2[ ( ) ( )]
cos(—0)=cos6 sec(—0)=secO cosacosﬂ=%[cos(a—,3)+cos(a +ﬁ)]
tan(—6)=—tan0 cot(—0)=—cotf

sin o cos f3 :l[sin(a +B)+sin(a—pB)]
Periodic Formulas 2
If n is an integer. R Ire +B)=si _
sin(9+27rn):sin9 csc(9+27rn)=cs<59 cosasinp 2[sm(a ﬁ) s1n(a ﬂ)]

cos(9 + 27rn) =cos0 sec(@ + 27rn) =secO Sum to Product Formulas

. B = 2gin| & +p oa—p
tan(0+7n)=tan0 cot(6+mn)=cotd sina +sin f§ =2sin 5 )%
Double Angle Formulas _

) ) sina—sinﬂ=2005(a+ﬂjsin(a p

sin(20) =2sin6 cosO 2 2

— coc? .2 _
cos(20) = cos* 0 —sin”0 cosa +cos fB = ZCos(a +ﬂjcos[a ﬁj

=2cos’ 0 -1 2 2

=1-2sin6 cosa—cosﬁ=—2sin(a;’8jsin(a;ﬁj
tan (20) = ﬂ Cofunction Formulas

I1-tan” 0

(m n .
Degrees to Radians Formulas sm(; —9] =cos6 cos (E - Qj =sin6
If x is an angle in degrees and ¢ is an
angle in radians then CSC(Z_ 9) —sech sec (E _gj —csch

Tt X 180¢ 2 2
—=— = t=— and x=——o0 T x
180 x 180 T tan(;—@j:cote cot[z—ejztane

© 2005 Paul Dawkins
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Math Formulas: Hyperbolic functions

Definitions of hyperbolic functions

Derivatives

10.
11.

12.

Hyperbolic identities

13.
14.
15.
16.
17.
18.

19.

T _ -

. e
sinhxz =
e’ +e7 "
coshr = ———
2
et —e " sinh z
tanhx = — — =
e 4+ e % cosh x
2 1
cschx = = —
er —e 7T sinh x
2 1
sechx = =
et +e T coshx
et 4+ e " cosh x
coth v = = —
er —e T sinh x

— sinhx = coshx
dx

d
— coshx = sinh x
dxr

d
— tanhz = sech?z

dx
d
—cschx = —cschx - cothz
dx
d
—sechx = —sech x - tanh x
dx
d
— cothx = —csch’z
dx

cosh? z — sinh® z = 1

tanh? z + sech?z = 1

coth? # — esch?z = 1
sinh(z + y) = sinh z - coshy & cosh z
cosh(z + y) = coshz - coshy + sinh z
sinh(2-x) =2 -sinhz - coshz

cosh(2 - x) = cosh? z + sinh? z

-sinh y

-sinh y
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-1 h2
20. sinh? g — T COShAT
2
21, cosh? g — LT Cosh2e
2
Inverse Hyperbolic functions
22. sinh ™'z = In (:r + V2 + 1) , = € (—00,00)
23. cosh™tz=1In (m+\/x271), x € [1,00)
1 1+
24. tanh_lm:51n<1i_;>, xz € (-1,1)
1 : 1
25. cothflxzi In (;J:1> , € (=00,—1)U(1,00)
141 — 22
26. sech 'z =In (H) , z€(0,1]
x
1 V1—2a2
27. esch™'z =1In ( + |3c> , T € (—00,0)U(0,00)
x x

Derivatives of Inverse Hyperbolic functions

28. i sinh™tz = #
dx 2+ 1
29. i cosh™tz = #
dz 22 _ 1
d 1 1
30. %mnh T = .2
d 1 1
31. —csch v =————
da eV
d 1 1
32. —sech™ 'z = ————
dx V1 — 22
d 1 1
33. I coth ™z = =22



Derivatives

a
dx

[z"] =

£d -

d
dx

d

% L
o

dx
d
dx

d
dx

Product Rule: <

Quotient Rule:

Chain Rule:

Special Cases

Formulas from Calculus

4 [e?] = e 4 [sin 7]

4 [b*] = b"Inb L [cosa]

< In 7] = 1 4 [tan ]

% [logy, x] = L % [sec x]

4 [sinh z] = coshz 4 [arcsinz]
4 [cosh z] = sinhz £ [arctanz]
% [tanh z] = sech %z

% [arcsinh z] = 1}%:1:2

% [arctanh z] = 1fx2

(@)g(@)] = F/(@)g(z) + F(@)g' (@)

)] _ o))~ 1ol

g(z g(x)?
Floe)] = Flo@)g@) o 2 - W

cos T
—sinz

SGC2 x

tan x secx




Integrals

/x” dx = %Hwnﬂ—&—c
1
/—dx = In|z|+C
x
/cdx = cx+C
/xdq: = %x2+0
/x2 dx = %1:3—{—0
1 1
x x
/\/de = 2zy/z+C
1
1
/ dz = arctanz + C
1+1a:2
dr = arcsinx +C
/\/l—a:2
Inz dx = zlnz —z+C
/m”lnxda: = %lnx —%—FC

™
8

U

8

Sy
8

8

8

2 2 g g g
5.8 g g E
5 8 ) 8 &8

Q. N
= 5 F & 8

cos® x dx
tan? z dz

sec? z dx

e S S S S S S

e +C

e

coshx +C
sinhx + C
—cosz + C
sinz 4+ C

In|secz|+ C
In|tanz + secz| + C

(x —sinzcosx) + C

N[ =

(x +sinzcosx) + C

N[

tanz —x+C

tanx + C

Substitution / flg(x)d' (x) dxz = / f(u) du=F(u)+C = F(g(z))+ C

b , ) ) du
[ ey @ = [ s d

Special cases /?lgj; dr = In|f(x)|+C

/ef(x)f'(x) dr = /@ 4 ¢

By parts /udv:uv—/vdu
/abudv = uv]Z—/abvdu
or | 1@y @de = f@)@) = [ g@)f' @) da



Electrical Device Modelling 2016

1 RESISTORS

1 Resistors

J | Current Density
v | Velocity

E | Electric Field

o | Conductivity

p | Resistivity

| Permeability

g | Charge per carrier
n | Carrier density

m | Carrier mass

7 | Time between collisions

Put above two together to get vector form of Ohm’s
Law

J=0F

g | Mobility (ease with which a charge carrier can drift)

Equation for mobility

_ar

Hq m

Conductivity (dependent on charge, concentration
and mobility)

0= qnyyg
Essentially R=V/I

[ E-dl

R:*fanE.dA

Volume integration over resistor

Simplified version of volume integration for constant

values
_L _opL
T cA A

Current density due to charge motion
J =qnv

Average charge velocity in resistor accounting for
collisions

qr

)

v=(—)E

11
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Electrical Device Modelling 2016 2 CONDUCTORS AND INSULATORS

2 Conductors and Insulators

€ | Permittivity

o | Conductivity

Low frequency behaviour is dominated by o, high frequency behaviour determined by how long charge
takes to redistribute in the material, which is a material dependent property

€
Tor = —
g

Charge redistribution bandwidth is the corner frequency between being a conductor and insulator

1 o
Ber = = —
CR 27TTCR 27e

f << B¢r | Conductor
f >> Bcr | Insulator

Skin depth model used when it is significant, large conductivity means large current that generates charge
separation which creates opposing electric field that attenuates the original field

w << WCR

[ 2
0=y —
wpo
Charge redistribution model can be derived from the continuity equation

op o
LT ,—0
5t+ep

12 Benjamin Ding



3 CAPACITORS AND INDUCTORS

Electrical Device Modelling 2016

3 Capacitors and Inductors

® | Magnetic Flux

n | Turns per unit length

pi | Charge per unit length

'h | Wire separation from central axis

a | Wire radius

Definition of Capacitance - charge separation per
volt

C(v) = qu(j’)

Assuming linearity from the above

e[lf, V- Edv
C="Ea

Definition of Inductance
Li=®

Self Inductance

dd
L(t) = —

0=
Coil Inductance
L =un’A

Infinite parallel wire capacitance

TE

log( +4/(5)2 = 1)

C =

Two parallel wires

C =

2me

log(2)

Coaxial cable

Benjamin Ding
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Electrical Device Modelling 2016 4 WIRES

4 Wires — Caused by mutual inductance and capaci-

tance

Non-ideal ti . .
on-ideal properties — Increased by a faster rise time, both in in-

e Signal Distortion ductive and capacitive cross-talk

— Ringing response of conductors at high fre- — Mitigated in same way as EMI
quencies is due to inherent inductance and  Consequences
capacitance of wires (skin depth)

— Wires act as a low pass filter ¢ Ground bounce

— Affected by resistance, self-inductance and — Connection between internal and system

capacitance ground is inductive, so due to L = % a

_ Mitigated by large change in current will change ground
voltage

x Slower rise times, meaning a lower knee

frequency so fknee j fring — Mitigated by

* Shorter wire lengths, shifts the reso- * Lower inductance packaging
nant behaviour to higher frequencies * Larger diameter ground wires
* Flattening high frequency impedance % Ground wires closer to ground plane
(achieved through zero reflection coef- *x Edge slowing
ficient) *x Lower voltage family
o EMI * Separate input group reference

* More ground wires
— Electromagnetic radiation caused by quickly

changing currents and voltages through con-
ductors in high-speed digital systems

Amperes Law broadcast your digital sig-
nal wirelessly by accident

— Caused by mutual inductance and capaci-
tance

Big problem when there are current loops

x Current flowing out a pin, along a wire,
into another device, and back via a
ground plane or wire

x The area enclosed by the loop is the
problem

* Behave like antennas
— Mitigated by
* Increasing rise time

x Keep current loops in small area e.g
coax cable

* Shielding
e Cross Talk

— Induced voltages and currents due to EMI,
causes noise

— Faradays Law receive digital signals wire-
lessly by accident

14 Benjamin Ding



Electrical Device Modelling 2016

4 WIRES

h | Separation from center

a | Smaller radius

b | Larger radius

v | Signal propagation velocity

D | Propagation delay per unit length
tsw | Switching time

Two parallel wires

h—a
a

)

[A/:Hlog(
m

TE
log(2)

Wire above plane

é:

Signal propagation velocity
1
N

Propagation delay per unit length

vV =

D:%:\/ﬁC':\/;E

Rising edge length

4.a Lumped Model

Output Stage A Lumped wire model

Input Stage B

Y | Voltage over inductor

vp | Voltage on receiving system side of capacitance

Lumped model occurs when lgy >> 1
Knee frequency characterizes the approximate
bandwidth of digital signals

1 0.5
fkNEE = ——~ —
wlsw  tsw

Interconnect resonant frequency, signal will be
distorted as the knee frequency exceeds the ringing
frequency

1t/ R 1
or V LC 202~ 9xVIC
Inductive Cross Talk

L N Ly N Ly Cy
AV T Ratsw -

fRING =

tw
Capacitive Cross Talk

AV T

tsw

15
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Electrical Device Modelling 2016

4 WIRES

4.b Distributed Model

G | Conductivity
p | Reflection Coefficient

Zo | Characteristic Impedance
I'| Attenuation Coefficient

€T

—— — el 1

=Y 0 N

Impedance at end

Z(x)

Impedance at end

Z(z + dz)

Impedance at end

Z(z) Z(x + dx)

e,

Distributed model occurs when lgy << [, these
types of systems often suffer from signal distortion

Zseries = R + Si

sthunt = é + SC’
Characteristic impedance is of an infinite length of
wire

Zseries

Zo =

Yshunt

At low frequencies

Zo(jw) = \/g

At high frequencies (also the characteristic
impedance of a lossless line)

Zo(jw) =

Qf

Distributed impedance model for a finite length load
terminated wire

dzZ(x) & 9 A
=Y. Z — Zseri
dx shunt[ (l‘)] series
Z() = Zioad

Resonant frequency

1

f’ring = (4Z)D
Reflection Coefficient

(s) = Z10ad(8) — Zo(s)
Zload(s) + ZO(S)

Attenuation Coeflicient

F(S) \/Zseries(S)}/shunt(S) = DipssiessS = S/U

Impedance for a finite length lossless wire

1 +p672sl/v
Zwire(s) = ZO(S)(W
Transfer function for output voltage/input voltage

_ (1+ ppexp(—si/v)
1+ ppexp(—2sl/v)

HAB(S)

16
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Electrical Device Modelling 2016

5 SEMICONDUCTORS

5 Semiconductors

Band-gap model

e Pauli’s exclusion principle means no two iden-
tical particles can occupy the same quantum
state

e Conduction band contains free to move electron

e Valence band contains electrons bound to spe-
cific atoms (immobile)

e Band gap is higher for insulators, lower for con-
ductors

e Extrinsic semiconductors are intrinsic semicon-
ductors with a dopant added

— n-type is with a donor level added below
conduction band that makes it easier for
electrons to jump up (Group V dopant)

— p-type is with an acceptor level added above
the valence band that makes it easier for
holes to move in the valence band (medi-
ated by electrons)

n | Mobile conduction band electrons
N4 | Immobile acceptor ions

p | Mobile valence band holes
Np| Immobile donor ions

T| Temperature

a| Recombination proportionality constant

Charge density is given by
p=q(p+Np—n—Na)

Electrons and holes are in pairs (dependent on
temperature), so the EHP generation rate is

Tgen = T (T>2

Electrons and holes also recombine in pairs, so the
EHP recombination rate is dependent on
concentration of both particles

Trec = NP

Electrons and holes can also be injected in via
diffusion or contact with another conductor,
therefore the mobile electron concentration model is
dn(t)
dt

= a[nlz - ’I’L(t)p(t)] + Tin(t)

Under equilibrium conditions with no injection

dn(t) _, _ d(t)
dt —  dt
np =n?

n—p=Np— Ny

Therefore the concentrations are

= 2N~ Na) 4 ) SVa — Np)? £ ()’

For an n-type semiconductor
Np >>n?, Na=0

Np
2
~ U

Np

For a p-type semiconductor

3
X

hsT

Ny >>le2, Np =0

Na

S]]
X

S

3
Q

Z

17
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Electrical Device Modelling 2016 5 SEMICONDUCTORS

5.a Currents in semiconductors Yields a pair of continuity equations
1 do )
L, | Diffusion length for holes gV Jp = —CTtP - ?p
L., | Diffusion length for electrons :
D, | Diffusion coeflient for holes _}v g, = _don _ on
q dt Tn

D,, | Diffusion coefficient for electrons
For the special case when there is no drift current,
and all current is due to carrier diffusion, the
diffusion current density due to electrons is

Ap | Hole perturbation at injection

An | Electron perturbation at injection

J, =qD,Vn
Current density in the semiconductor is due to drift
and diffusion e ememee—m e cmmmmmn -
op(z) .o ‘
Jn = qnunE 4+ qD,Vn e .

dp(x) = Ap exp (~z/Ly) : .
1 Cross-sectional

Jp = qnppE +qDpVp

n-type semiconductor / area
J=J,+J, A
Where diffusion coefficients are
kT
D) = 7#}) The diffusion equations for electrons and holes are
dén on
kT 200 2 _ e
D, = ?Mn dt DnV=(on) Tn
Recombination lifetime dop p
at DPVZ((SP) -
= a(n +p) Define the diffusion length of carriers as
For p-type and n-type respectively, due to dominant L, = /Dy,
carriers, the recombination rate is
1 Ly, =+D,m,
TR = 075 By solving with boundary conditions the excess
) carrier concentrations dp, dn can be found
Tr 7T = an op(0) = Ap
If space charge neutrality is assumed, a perturbation
in one carrier will instantly result in a perturbation dp(o0) =0
in the other carrier, this is due to the ’instant’ op(z) = Apexp(—x/Ly)
charge redistribution time compared to
recombination, therefore ‘,-----------"-"""""“'""'"""""
Currents - n-type semiconductor .
p=4q(p+ Np —n— Ny) (from before) oy |
p(t) =n(t)+ Na— Np I(z) =I[1—exp(—z/L,)] E K
(] ’
Define perturbations in the carriers as I(z) =1 exp(—z/L,) E .
‘ i—) :o"
on(t,xz) =n(t,x) —n | 1 —’):E
L

5p(t, $) = p(t, ZE) —p

18 Benjamin Ding
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5 SEMICONDUCTORS

The total current at any point flowing through the
device is due to hole injection at x = 0, where
electron current is zero

(0) = (145

I=1
LP

p

Ap)

The electron current must pick up as hole current
decays, the individual currents are

I,(z) = I[1 — exp(—z/L,)]
Ip(z) = Iexp(—x/Ly)
I=1,+1,

5.b Junctions

n-type
semiconductor

p-type
semiconductor

D, | Diffusion coeffient for holes
D,, | Diffusion coefficient for electrons
Vp | Gradient of p
Vn | Gradient of n
p | Hole mobility
tn | Electron mobility
p | Mobile hole concentration
n | Mobile electron concentration
k | Boltzmann’s constant
L,, | Diffusion length for holes
L,, | Diffusion length for electrons
Ap | Hole perturbation at injection

An | Electron perturbation at injection

Immobile Immobile . .
ionized ionized At equlhbrlurn7 Jn = Jp =0
atoms atoms
Mobile Mobile —
holes in donated 0 annE + anVn
valence band electrons
0 =gnu,E +qD,Vp
Electron Therefore the electric field at equilibrium is
Hole concentration
concentration D 1
E = *,up (];Vp)
Electron Hole . P
concentration concentration
< > The ”Einstein relation”

Carrier gradients between the two semiconduc-
tors leads to diffusion between the two

Electrons diffuse from n to p
Holes diffuse from p to n

Mobile charge is depleted in central ’depletion
region’

Depletion approximation assumes that the en-
tire voltage drop is over the depletion region

Charge separation causes an electric field that
opposes diffusion and creates equilibrium

D, kT
Hp q
Integrate over a path through this electric field with
initial conditions of the injected carrier
concentrations to find contact potential

kKT
“log(P?) ~

n

kT NsNp
—lo 5
q n;

D
Vo =—-2 10g(pl) =
Hp n

g( )

With an applied voltage V'

14
Pp

14

n

g(

D
Vo—VZJIO )
"

P

Solving for the new carrier concentrations

v \%4
8 _ @)
Py Pn kT

Py ~ Dy
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Voo qV Curren
~ ex 4
P % P exp(55) I
Vo qvV g ' |
n, ~n,ex I
P P p(kT) P V—--- _
¢ j —p S — Diffusion
SRR S o 0 il dem s
® O © Electric field i ® © © Voltage
! 4_9_ L
- 5 5 O 6 O O O
P - P T e
v v @ Depletionregion : & & & Drift
; : : v dominates
v 1 | H
n, (x n (T
YO, L a (@)
\%
Injected electron Pn+ Ay
distribution

Forward bias (diffusion dominates)
Injected hole
distribution

V>>0

Applying this to solve for the injected carrier

distribution

qV
=, 1
Ap, = pa(exp( kT) )
qV
An = n,(exp( kT) 1)
Integrate to find the diffusion currents due to

materials
gAD,

Iy(x) = (—

2)ApY exp(— ), @ >,
LP p
AD,, T+
I(@) = (=) An} exp(— =~

), T=Tn
n
Shockley Diode Equation can be obtained by

summing the two currents
qV

I1=1Ip 1

[exp(77) — 1]

The saturation current is

Io =

Dypn
L p

D,n
qA( L

—)

L,

Dy

injected hole/electron distributions in n/p-type

qv
I~]

oep(LY)

Reverse bias (drift dominates)

V <<0

I~ fIO
Conductivity of neutral regions can be used to
determine if negligible voltage drop assumption is
valid

Q<Mpﬁp + Mnﬁp) ~ qUpPp
= Q(Nppn + pnfin) = qinTiy,

General Assumptions

e Electric field is confined to the junction and
there is no electric field in neutral regions

e One dimensional device
5.c Junction Dynamics

There are two charge storage mechanism in junctions

and therefore two capacitances

e Depletion region capacitance

e Diffusion capacitance

| Diffusion coeffient for holes

k | Boltzmann’s constant

pn | Equilibrium minority carrier concentration (holes)

» | Diffusion length for holes

Tp | Recombination lifetime (holes)
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Total junction
capacitance

c

Cdepl

Applied
voltage

V

Forward bias
Diffusion capacitance
dominates

Depletion capacitance
dominates

Depletion capacitance

Q(t) = Qdepl (U (t))

dQ e
Cdepl (’U) = Cflj) 2l
Cdepl(v) = 6A q
2¢(Vo — V) i

Diffusion capacitance (two expressions for mobile
holes and mobile electrons)

q(t) = Qais(v(t))

dQ
Cairf(v) = dvf !
2
v
Cdepl(v) = %ALppn exp(%)

For a long p+n junction diode, we can assume
junction operation is dominated by hole injection,
and that all recombination happens before the end

of the n-type material.
The total charge due to injected holes on the n-type
region is:

X
Qp(t) :/ qAdp, (L, x)dz

n

Using this, the charge control model for both
forward and reverse biased junctions can be derived

The charge storage delay for pt —n and p — n*
respectively

I
tcsp = Tp, 1og(1 + Tf)

I
tcsp = T, log(1 + Tf)

The charge control model can be applied for forward
or reverse biased junctions.

e In forward bias, the charge is due to carrier in-
jection in neutral regions either side of the de-
pletion range. Separate models hold for both
electrons and holes.

e In reverse bias, the charge is due to the "uncov-
ered” ions in the depletion region

¥ (2) ?d(t) oY (2)
»\
p+ v W o
O @ P, Pn
n. A
i [ 0 ] X
—Tp +In

e Derivative term implies that changes in stored
charge lag behind changes in current

e When the diode is ”turned off”

— Charge storage delay
x The applied voltage switches sign
* The excess of injected holes decays

x Diode voltage drops from contact po-
tential down to zero

— Carrier depletion
* Diode enters reverse bias
*x Depletion region expands
* Diode voltage settles at -F

e For "turn on” the reverse
e Assumptions

— n-type region is long X >> L,

— p-type region is heavily doped compared
with n-type region p,, >> n,

— Half-period is much longer than recombi-
nation lifetime 7" >> 7,

— Forward bias junction voltage is limited by
contact potential v(t) < Vp

— Contact potential is much smaller than mag-
nitude of applied voltage Vo << E

Reverse bias saturation is very small Ip ~
0
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6 Bipolar Junction Transistors

Applied Voltages B-E junction bias | B-C junction bias | Mode
E<B<C Forward Reverse Forward-active
E<B>C Forward Forward Saturation
E>B<(C Reverse Reverse Cut-off
E>B>C Reverse Forward Reverse-active

e Forward Active

1. Carrier injection - forward biased BE junction

— Injection of minority electrons into the p-type base region
— Injection of minority holes into the n-type emitter region
2. Carrier diffusion - base transport
— Diffusion of injected base electrons towards the collector
— Recombination of some injected electrons with majority holes
— Diffusion of remainder into the BC junction depletion region

3. Carrier Drift - BC depletion region

— Drift of minority electrons from base to collector
— Conventional current flows into the collector

— Large current gain due to minority electron current dominating BE current (BE junction is pn+)

— Collector current smaller than emitter current due to recombination across base and emitter hole
current

o Reverse Active
e Saturation

o Cut-off

Ve -m e

Cutoff

Saturation

Veesat ----

- Vee — Ve
Veesat = Vee-on — Vec.on Vee-on + Re (w)

F Bc
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B | Current Gain

Ebers-Moll model
Current transfer ratios

Br
« =
R 1+ Br
Br
« =
1Y 8
BE junction current
qVBE
Ir=1 -1
F ES[GXP( T ) }

BC junction current

Vi
In = Loslexp(L29) — 1]

Total emitter current
I =1Ip —agrlp
Total collector current
Ic = aplp — Ig
Total base current
Ig=1g—1I¢

Hybrid-Pi model

Yoo

Vac.on

¢ = —
Local Gain

Vo _ RcPr
vy Rp+rg

B -
VeEON Vo = VO + vo

6.a BJT Dynamics

Ebers-Moll and Hybrid-Pi are static models that ig-
nore internal BJT dynamics, a dynamic model ac-
counts for applied terminal voltages and currents that
are time varying.

Steady state diffusion equation for electrons:

e Forward active

— Approximately linear for narrow base widths

— Charge injection is across BE junction only

— Injected charge distribution dominates charge
storage

e Cutoff

— No injected charge
— Charge stored in depletion region dipoles
only

e Reverse active mode

— Carrier injection across BC junction only

— Injected charge dominates charge storage
e Saturation

— Carrier injection across both junctions

— Superposition of forward and reverse ac-
tive moves

— Injected charge dominates charge storage
n(t,xz) =np(t,z) —ny

d?6n, () _ Ony(z)
dx? Tn

0= Dy

Solve using boundary conditions

qVBE
-1
o) 1

on,(Wy) = Ang = —n,

0n,(0) = Ang = nylexp(

Assuming that the p-type base material has relatively
few electrons compared to that injected by the emit-
ter, the excess electron concentration in the base is

exp(Hp=2) — exp(—14=2)

exp(72) — exp(—72)

dnp(x) = Any( )

The terminal currents are therefore

Iy = qADth:o
dz

23 Benjamin Ding



Electrical Device Modelling 2016 6 BIPOLAR JUNCTION TRANSISTORS

Ip = qADth:o
dx

Ip=1Ip—Ic

gr | Charge stored in forward active mode excess carrier distribution
gr | Charge stored in reverse active mode excess carrier distribution
gpE | Charge stored in BE junction depletion region
gsc | Charge stored in BC junction depletion region
7F | Mean minority carrier transit time across base in forward active mode
Tr | Mean minority carrier transit time across base in reverse active mode
7pF | Minority carrier lifetime (in base) in forward active mode

7pr | Minority carrier lifetime (in base) in reverse active mode

qr d 1 1 dgr
ic = e & v (ot )
R
ip = e dgr _dgse _ dgac R dar
TBF  di dt dt TBR  db
. 1 1 dqr qr
e = e+ 1) dqgr _ dagge + R
TF  TBF dt dt TR
Electron Electron

Depletion region

injection across -
capacitances

BE junction

injection across
BC junction
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