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Misc

Proper Function
Degree of numerator does not exceed that of denominator

Strictly Proper Function
Degree of denominator exceeds degree of numerator

Block Diagrams

[JT(S) Y(s) L'T(S) Y(s)
> F(s) > G(s) — * —| F(s)-G(s) }——
pA N R
> 5 v Y(s) (s v
O— p 29 ) o |25
- o f——a~=
U(s) Y (s) U(s) Y (s)
— C(s) > G(s) » | G(s)-C(s)
o * N156G)-C6) [
U(s) Y (s)
= Z_ > G(s) > U(s) () Y(s)
’ "1+ G(s)-His) =
H{s) |«
Linearization
0= Vh| - (x—Xo)
dh oh | dh oh | dh
= —| Ay+ —| Ay+ —| Ay+ —| Ar4+ — Ar.
Y | x, Y |, A7 |, o, or |,

Ay = (y —yeq), etc.......
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Gain and Phase Margin
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Second Order Dynamics
2+ 2Lox + 0,2 =0

Damping
o, = Natural Frequency

C = Damping Ratio
w,; = co,,\/l - QZ

Settling Time
t = 4

s (vo,)

Peak Time

Tp 0, V1-¢*
Overshoot

)
%08 = 100e 1=

Time
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Laplace Table

Benjamin Ding

Table of Laplace Transforms
f=2"{Fis)]  Fls)=21/(1)] [ =C'F(s))  F(s)=2{f(1)]
Lo z 2 e b
& £—a
3r, n=123,.. L 4 1> el
5 5
5. Jf ‘E 6. 7, n=123 —]'3'5'"{2";]}&
257 b
7. sinfaf) 1” 8. coslart) 15 -
5 +a s +a’
) 2as 5t —a’
9. tsinfar) {SJ _HIJ} 10, reoslar) {.s'* o }:
) 2’ 50 o 2as’
11. sin{ar)—atcos(ar) {sl+a1}l 12, sin{ar)+ arcos(ar) {S;MJ}!
s(s'-a') s{sl+3a'1}
13. cos|at)—atsin{ar) e T 14, cos|at)+atsinart) e ah
(s +a’) (5" +a*)
15. sinf{ar+5) sam(h)+acos|h) 16, cosfar+b) #c0s{h) —asin(b)
S +a s +a
17. sinh{at) L. 18. cosh(ar) .
5 —=a 5 —a
o h & 5—a
19. e sin| b —{.q—a]n1+b’ 20, e"cos|hr) —{.i'—d}l+b1
=i [ 5 s—a
21, e"sinh{be) m 22 e"cosh{hr) m
2 i E: o MY : 1l fs
23. re", n=123,.. (s—a]” 24, fla) ;F(F)
25 u(t)=ult—c) e 2 &t —c) &
© Heaviside Function s © Dirac Delta Function
27 w (1) f(t—c) e F(s) 28 u(t)glt) e L{g(t+e))
29, e'f(i) F(s—c) 30. rf(t), n=123,.. (=1)" F*"'{s)
31, %_r{:} [ Fuydu |32 [ f(v)ay FLS}
3. [ f(t-1)g(r)ds F(s)G(s) |34 f(t+T)=f(1) J, e f (o)
1-e ™
35. f(1) sFis)=f(0) |36 ['(1) s F(s)-o(0)-7(0)
37, 17(1) $F(s) =51 (0)=s" ()= (0) =1 (0)
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Other Mathematical Tables

Benjamin Ding

S.Mo. | Form of the rational | Form of the partial fraction
function
px + 0 A B
N il S k B wme B
L e amoe T TED TR
HE RO B g B
2 (% - ajl2 (x~a) (% - 33'2
PR 4+ g +r A i R i c
3 o b =
(% - a)(x - bi(x - CJ (#-a) (x-b) (x-0)
pRZ & gu +r A, B ¢
& (s EI:IZI:X ) (- a) R EI:I2 (¥ =)
. PR + gy +r B s B g W8
' (5 - a3 (x - b) (k-23) (x-a® (x-a° (x-b)
2
P QR FE a + 2E-><+C , where %2 + hx + ¢
B. (% - a)(x% +bx +C) (x-a) % +bx+c
can not be factored further,

TRIGONOMETRIC IDENTITIES

RECIPROCAL IDENTITIES

1 cosx
clx=—=—
tanx sinx
1
CSCY = ——
sinx
1
SELY = ———
COSX
PYTHAGOREAN IDENTITIES

sinfx+cosfy=1

sinfx=1—-cos®x
costx =1—sin®x
1+ tany =seclx

1+ cot*x=csc?x

SUM AND DIFFERENCE IDENTITIES
sin{x T v¥) =sinxcosy x cosxsiny
cos{x +¥) = cosxcosy £ sinxsiny

tan x + tany

tan{x +y) = ————
: I+tanxtany

DOUBLE-ANGLE IDENTITIES
. . 2tanx
sin2x = 2sinxcosx =————
1+ tan=x
cos2x = cos? x —sin® x
=Z2cosix —1 )
- 1—tan*x
=1-2s5n"x ='l+—r—'_;_"j
2 tanx L
tan 2x = ———
1-—tan-x
cot*x —1
cot2x = ————
2cotx
HALF-ANGLE IDENTITIES
] .1'_+ 1l—cosx
5]!]; i
2 | 2
X, 5 1+ cosx
coso =1 =
2 4 2
X 1—cosx sinx 1 —cosx
tan-==% = = 7
2 N 1+cosx 1+cosx sinx
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Final Value Theorem and Error

z(0) = lim sX(s) Final value Theorm (p.C Gain)

& —H20

I(DO) = ik 1 S}f(sj Initial Value Theorm

s5—0

Static Error Constants

In the previous section we derived the following relationships for steady-state error.
For a step input, wif),

1

#(09) = eaelo®) =iy

For a ramp input, m(r),

R e T,
20) = Cmmp 1960 = Tim 5Gi(s)
=Y

. 1 .
For a parabolic input, EJrzm'lr:-.

:I e Tk l
€(06) = €parmbaia (o) = lim $7G(5)

Where the type is the number of pure integrators in a system G(s)C(s)

Input Step, A/s Ramp, A/’ Parabola, 4/s°

Error Constant K, = ]ir% G(s) Ky= 111% s{a] Huy— 1i1'J:Et|I s2G(s)

System type Steady-State Error
A
0 . :
[+, oo oo
A
2 0 0 _
K,
3 and higher 0 0 0
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With Disturbance
https://www.ee.usyd.edu.au/tutorials_online/matlab/extras/ess/ess.html

R(s) —lim $Gia(s)

e GGE

eloo) = g sEls) = I 1) Ga(s)

R (DL) -+ EQ(DO)

If

where
er(o0) = lmmﬁ,“}
and
en(0) =~ 755 o ey P
D(s)
R(s), _ E(s) [Controller i Plant

: C? Ge(s) > G(3) el

we can find the steadv-state error for a step disturbance input with the following equation:

1

elo) =
lim
=0

+lim &(5)
=0

1
&4s)

Lastly. we can calculate steady-state error for non-unity feedback systems:

R(s), _ e ) »C(5)
H(s)
By manipulating the blocks. we can model the system as follows:
R(j).: o Ele) G(s) -C(s)
_? 1+G{g]H(s) - Gis)

Now. sumply apply the equations we talked about above.
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Matching Output Responses with Time Domain Plot

In order
1. Stability (LHP Poles)
2. Final value
o G(0) multiplied by whatever the time domain input is
3. Poles
o Complex poles
i. o, damped frequency is magnitude of imaginary part of pole
ii. oxjocomplex conjugate pole pair in the left half of the s-plane combines
to generate a response component that is of the form Ae %sin(wt + @)
iii. f)—’; is the period of oscillation, match to plot

iv.  When the damped frequency ¢ is small <0.1? The frequency of
oscillation o, =~ o,
o Check for
4. Zeroes
o Undershoot when RHZ (Positive/Unstable)
o Overshoot when LHZ (Negative/Stable) and small (close to imaginary axis)
relative to dominant pole
5. Time Constant
o Typically the dominant stable pole (s +a) goes to e where 1 = }l
o Expect almost full decay after 5 time constants

lmags)

2 fast slow slow fast

S

S ]

§. A x % XA X

(¥

W ’ .ll

w 19 — s

§ o xS D‘UE XAy X

=

]

m 1] — all

"‘5" ni\“— X\”‘ | X’/ Real(s)

o

E

decay Left half plane Right half plane grow
\-‘-*Imaginar\.r axis

Bode Plots

Checklist
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Total Phase Change

PO Dd -~

and {<0.5

Initial value 20/og,(|G(0)]
Final magnitude rate of change is equal to (n — m) * 20dB/dec

Benjamin Ding

Existence and location of peak consistent with o, when there are conjugate pair poles

Location of magnitude changes (usually a decade to either side of )

6. Location of phase changes (usually a decade of less to either side of o, )

about 0 dB)

Term Magnitude Phase
K>0: 0°
Constant: K 20log,(IK]) K<0: +180°
Pole at Origin
1 -20 dB/decade passing -90°
- through 0 dB at w=1
(Integrator) =
+20 dB/decade passing +90°
Zero at Origin through 0 dB at w=1 (Mirror image of Integrator
(Differentiator) *# (Mirror image of Integrator a biut 0°) g

1. Draw low frequency

3. Connect lines at w,,.
(Mirror image of Real Pole
about 0 dB)

Real Pole 1. Draw low frequency asymptote at 0°
1 asymptlote at0ds 2. Draw high frequency
p 2. Draw high frequency asymptote at -90°
—+1 asymptote at -20 3. Connect with a straight
fil dB/decade . .
I _ line from 0.1-w, to
3. Connect lines at w,,. 10w
0
1. D low fi
1. Draw low frequency asrixp(t)(\)h’:er:fg? ney
Real Zero asymptpte at0ds 2. Draw high frequency
2. Draw high frequency o
asvmbtote at +20 asymptote at +90
S +1 dB);depcade 3. Connect with a straight
g line from 0.1-w, to

10-w,
(Mirror image of Real Pole
about 0°)
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RHP Real Zero
(s—1)

Same as above

Phase change of -90°
in frequencies a
decade either side of
w=1 rad/sec

Underdamped Poles
(Complex
conjugate poles)

2
)

S2+2C(,00S+(1)02

1. Draw low frequency
asymptote at 0 dB

2. Draw high frequency
asymptote at -40
dB/decade

3. 1f<0.5, then draw
peak at w, with
amplitude
|H(w,)|=-20"l0g,,(20),
else don't draw peak

4. Connect lines

Draw low frequency
asymptote at 0°
Draw high frequency
asymptote at -180°
Connect with straight
line from

o =20 1o oy -10°
10°

LHP Underdamped poles
(Complex Conjugate Poles)

Same as above

Phase change of -180
around natural
frequency o, (half a
decade to either side)

Underdamped Zeros
(Complex

conjugate zeros)

2
B Y I
iy @y
0« =l

1. Draw low frequency
asymptote at 0 dB

2. Draw high frequency
asymptote at +40
dB/decade

3. 1f¢<0.5, then draw
peak at w, with
amplitude
|H(jw,)[=+20-l0g,,(29),
else don't draw peak

Draw low frequency
asymptote at 0°
Draw high frequency
asymptote at +180°
Connect with straight
line from

) =E to ma-lD;
107
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4. Connectlines
(Mirror image of (Mirror image of
Underdamped Pole about 0 | Underdamped Pole about 0°)

aB)
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(s +1)2

System Parameter | Step response Bode (gain) Bode(phase)
K
. K
Ts4+1
&
2
3 T,':l-'
52 + 2wy, s + w? '
Wa
as+1
a
(s+1)2
—as+1
@
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Routh Criterion

If degree of characteristic polynomial is 1,2 then you can just check if there are any negatives.
For higher order polynomials Routh Criterion can be used.

Special cases:

1. A zero in a row with at least one non-zero appearing later in the same row.
o This means that there will be a sign change i.e an unstable pole
o If you still want to know how many unstable poles, replace zero with epsilon and

take the limit of epsilon going to zero, so it is still positive but very small.

2. Entire row is zeros - results in three possibilities
o Two real roots equal and opposite in sign (Unstable)
o Two imaginary roots that are complex conjugates (Marginally Stable)
o Four roots that are all equal distance from the origin (Unstable)

4
For p(s) = Z ars®, ag >0,

e=1)
‘34 ay a9 (L
s> as aq 0
52 E}U | _a.4a1ﬂ;a.2a3 bl £ _a.,i.[);gagag — ap 0
gle | gt ﬂ351%ﬂ1bﬂ 0
.5‘0 __bp-0=bye o bl

c
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Root-Locus

No gk owdh~

11

There are n lines (loci) where n is the degree of Q or P (whichever is greater)

As K moves from 0->« the roots move from the poles of G(s) to the zeroes of G(s)
When roots are complex they occur in conjugate pairs

At no time will the same root cross over its own path

The portion to the left of an odd number of open loop poles/zeroes are part of the loci
Lines leave (breakout) and enter (breakin) the real axis at 90 degrees

If there are not enough poles or zeroes to make a pair then the extras go to or come
from infinity

Lines go towards infinity along asymptotes dictated by the equation where

Angle: , = S0 & 180 deg

> finite poles — Y. finite zeroes
Centroid:

n—m

n—m=#Poles — #Zeroes

If there are at least two lines to infinity, the sum of all roots is constant

. K going from 0 to negative infinity can be drawn by reversing rule 5 and adding 180

degrees to the asymptote angles

. Phase condition: the angle of a point on the root locus to all zeros minus the angle to all

poles is equal to (2/+ )=n

(2 + 1) = £F(s0) = Y0ty Ls0—Br)—Yop_y Z(so—ay) for 1 =0,+1,£2, ...

L[:s—pj:}=186°+i4(5—zi}—i4(5—pi)

i=
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Nyquist Plots

The system is only stable if:
# Anticlockwise Encirclements of -1 = # Unstable RHP Poles

Plotting

1. Put s=jo into the transfer function
2. Sweep ofrom0to «
3. Draw reflection about real axis

There are 4 points needed in order to do this

1. =0
Plug 0 into the transfer function and evaluate, the Nyquist plot starts here
2. ®=o

Plug infinity into the transfer function and evaluate, the Nyquist plot ends here

3. Imaginary intercepts
Plug s = jo into the transfer function and split into the real and imaginary parts. Set the
real part to zero and solve for o, and then plug that into the imaginary part

4. Real intercepts
Same as above, but set the imaginary part to zero and plug the frequency into the real
part

No Poles at the Origin

1. For a Proper transfer function, entire Nyquist contour for the infinity region maps to a
single point with a finite magnitude on the positive real line.

2. For a strictly proper transfer function, entire Nyquist contour for the infinity region maps
to zero
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The ."Vj?uis‘} (antoor

.Eﬂ'Fl ni Lfl‘j
ior\ﬁf

Poles at the Origin

1. Instead of going to the pole at the origin, encircle it with a very small radius ¢
2. As this encirclement happens, the gain will tend to infinity
a. If the encirclement is done on the right, it will exclude this pole and gain will be
+ 00
b. If the encirclement is done on the left, it will include the pole and gain will be —
3. Phase will sweep from -90 to 90
4. The infinity part of the Nyquist contour should always be going clockwise?
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Typical Pole-Zero Configurations and Corresponding Root Loci. In summa-
rizing, we show several open-loop pole—zero configurations and their corresponding
root loci in Table 6-1. The pattern of the root loci depends only on the relative separa-
tion of the open-loop poles and zeros. If the number of open-loop poles exceeds the
number of finite zeros by three or more, there is a value of the gain K beyond which root
loci enter the right-half s plane, and thus the system can become unstable. A stable sys-
tem must have all its closed-loop poles in the left-half s plane.

Table 6-1 Open-Loop Pole—Zero Configurations
and the Corresponding Root Loci

e Jiw ‘f

gy
) 1
s’
57
* =
g

\ |/

i ) ’i\_

\

i 1

PN
<

]
|
D
7 4 N

e | J A je

:/‘ e S Jor 4

A
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ECE 3510 Nyquist Plot Notes o

40V

A Nyquist plot is essentially a polar Bode plot. Like a Bode plot, it is plotted for the Open-Loop (OL)
Transfer function and will give information about the stability of the Closed-Loop (CL) system.

N gls) m = number of zems

OpendLoop (OL) Transfer function:  G(s) =
D s} o = number of poles
Basic Nyquist Rules

1. "Clean up” any"-8" terms in &z by muliiplying by -1 as needed.
if a"-" remains in G{s), the Nyguist plot will be mirrored about the imaginary axis. (rare)

2. Start at G(0), the DC gain, a peint on the real axis. +Hjo
If G{s) has a zero at the origin: G(0y= 0 i 2700, 8ge
If Gis) has a pole at the orgin: G0} =+ oo
Land e _ o
Check inifial phase angle as you would for a Bode plot. +1800 09, 23600
L1 700
3. End at Gl=). _JWE'D"_. 270
n<m Plot —= =  almost always =
(rarz)
n=m Plot —= Gi=), a point on the real axs opm=73
L > m Plot —= 0 Angle of approach to origin =  (n— m)-(- 30-deg) P oM B
{most common) T
4. Plot the rest of the frequency response of Gis). & may help to start with Bode plots. pm=1

5. The w = 0 curve {dashed line) iz simply the mirmor image of the w = 0 curve about the real axis.
This part of the curve is usually not necessary, it doesn't provide any more informafion.

6. Gain, k, makes entire plot growin all directions {or shrink i k=1).
1T 17 CET

: L !
L :

A I L1

; z —>biggerk —= -TiTu 1 —=>biggerk —>

- --

7. Z=N+P
P-oL poles in RHP (D if opendoop stable)
N = CW encirclements of -1, CCW encrdements are counted as negative and may make up for E.
Z =ClLpoles n RHP {must be zem (or = 0) if closeddoop stable)

i
yE

8. ANY CW encirclements means Closed-Loop system B UNSTABLE

M = 0 —= CL unstable
ECE 3510 Nyquist Plot Notes p.1
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ECE 3510 Nyquist Plot Notes p.2

Counting Clockwise Encirclements - ——
£ S
N = cw encirclements of -1, a
CCW encirclements are counted as negative and may make up for P. I'.
& kY
N
b
[ CL System 4 { System CAMMNOT be stable
- CANMNOT be stable | |
; ‘——/
F you hawve the w < 0 curve (dashed line), then you I you don't have the w < 0 curve {dashed line), then
can uge any single-ended line that starts at -1 to make your line extend both directions from -1.

help you count encirclements.

L g
- N=4
CL System CANNOT be stable
5T Ny
= \___/’
cw G

System CAMMNOT be stable

i X
-1

N=0 G

CCW encirclements are counted as negative. CL System CAM be stable, if P< 2

-MN can make up for +P. and stabilize
Z=N+P an OL unstable systemn

P-oL poles in RHP (0 if opendoop stable)
N = CW encirclements of -1. CL System CANMOT be stable if N =10
Z =CL poles in RHP (must be zemo (or = 0) if closedHoop stable) ECE 2510 Nyquist Plot Notes p.2
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Gain Margin (GM) and Phase Margin (PM) ECE 3510 Nyquist Plot Notes p.3

To find the Phase Margin (FM)
1. Find where the Myguist plot crosses the unit cirde. These crossings separate the unit circle into regions.
2. Decide which of these regions have unacceptable CW encirclements.

3. Determine what phase change would cause the -1 point fo be an unacceptable region, usually 180° - / crossing
o 05 90 25 g,

GM=

11 I|
a0 ||
163

180

PM = 207-130=37 deg M
ang
05
210

11=
220
a2

a0
231
o
3

LY
To find the Gain Margin (GM): 4l 265379 275 18

g5 190

1. Find where the Myquist plot crosses the negative real axis. These crossings ssparate the negative real axis into regions.
2. Decide which of these regions have unacceptable CW encirclements.

3. Determine what gain would cause the -1 point o be an unacceptable region, usually ; info the
S9esSmE  ynacceptable region.
4. Usually there is just one upper limit of gain— in that case report that as the Gain Margin.

5. If there iz a lower limit of gain, eport the Gain Margin as: GM= |:L|::werli'r|'! 2 upperE'mit:|

If there is no upper limit, then report it as «

G(s) = 15(s+2)
> 2 Pi=1 For CL stabili Ni=-1 ormaore
(s—1)\s+2s4+2 L2
s _1' ta, :U.J’J []=
a=0! : =T —

1 ; 1 1
= — = 7
N =1 in this region GM |:1.5 ’a.?5:| |:ﬂ-66- .1.333:|

ECE 3510 Nyquist Plot Notes p.3
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Poles on the imaginary (ju) axis ECE 3510 Nyquist Plot Notes p.4

The normal contour A pole on the imaginary axis causes a problem.

Je Iz it inside or outzide of the conftour?
e = 4 zingle pole at the origin
\""\ R T
.,
™, B A closer ook The Myquist plot of this
",
kY Modify the
y contour fo
III exclude the i J e
I/I_f =  problematic pole.| ""J L
+ JSUFE
.'I ;"
.-'.I l /
i
ra z asje[S
. - £ e
T .-"'-"' .-"’
k= o Ty e
_J.;.;. |
o
A double pole at the origin A triple pole at the origin The Myquist plot
L JT BE3E
e &
.-/.
.l(.
/
: —a | .s_r o
The Myquist plot '. J o
— T ,,'J'. 'r'f. o I"._ _-"I
<:ﬂ=_i£-1 _l,'lltl.'=t A x.-"r
\ Jr'f \\~ 4
'\_ P N g
._\_._\- .-_-_".'E\-_._ ___d.-".- _jM
—jm
Poles at other locations on the imaginary axis Possible Nyquist plots >
. t
o
.'_\L:E_""‘-u.._\_\_& i
i -, P L.
> 5 _ 2
kY
Lt /
pole P b ~
i) i
E T
- = . T
3 i »
z-r :_‘.‘:.i -
/ / '
/'/
e ’
: ECE 3510 Nyquist Plot Notes p.4
]



