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Materials

Bonding between Atoms

Attraction
Coulombic force between particles

Fy = q1q;/4meor?
g1,92 — electric charge of the two ions

E_O — permittivity of vacuum
r — distance between particles
More simply
F,=A"/r?

Work done by F_a for pulling particle from infinity to position r

E—fmFd— 4
A—Tar— r

Repulsion
BI
Fr = _rn+1
ER = B/T‘n
Total
dEy A’ _ A
FN = W = FA FR = T_Z = ‘rm

A
EN=EA+ER=_; = ——
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Attraction
——

Covalent bonding

Sharing electrons, strong primary bonds

m<n

Metallic bonding

Valence elecrons can move freely from atom to atom — not localised

m<n

van der Waals bonding

Benjamin Ding

Dipoles form and go at all times, attraction between oppositely charged poles, weak secondary

bonds
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Effect of Temperature

oo e
Interatomic distance
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Potential energy ——

Vibrational energies
<
A

T1<T2<T3<T4<T5

As temperature increases, r increases — thermal expansion

Effect of Force
+ i .
« Attractive force Fy
. \ , _
= y Bond like a spring
S
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S | » Interatomic separation r
& | / Repulsive force Fp
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rB: breaking distance
FB: breaking force

Once you have passed the breaking distance/force it becomes easier to pull the atom away
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Structure of Crystalline Solids

General

e Amorphous solids — packing of atoms is random
e Crystalline — periodic packing of atoms
e Unit cell — repeating unit in crystal

Benjamin Ding

e Materials take certain structures so that the lowest potential is achieve

Face-Centered Cubic (FCC)

Equivalent atoms 4
Length of a 22 R
Total volume of unit cell 16V2R3
Total volume of atoms 16 .
?T[R
Atomic packing factor (APF) 0.74
Packing type AB

Body-Centered Cubic (BCC)
\

L l

F]

Equivalent atoms

Length of a

il &~
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Benjamin Ding

Total volume of unit cell 64R3
3v3

Total volume of atoms 8 .

§T[R

Atomic packing factor (APF) 0.68

Hexagonal Close-Packed (HCP)

Equivalent atoms 6

Ratio c/a 1.633

Total volume

Atomic packing factor (APF) 0.74

Packing type ABC
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ABC Packing

The third layer can be either C or A, but not both on ' A
the same layer!

Close-packed plane (layer A)

Intestitial sites: B(upright triangles), C(upside down triangles)
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AB Packing

Miller indices
<uvw> is a family of directions [uvw], every direction has the same arrangement of atoms

{uvw} is a family of planes (uvw)

Defects in Crystalline Solids

General
e Perfect crystals have no irregularity
e Defects can give strength and rise to processes like diffusion
e Distortion is deviation of atoms from their sites
e Defects have higher energy
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Point defects

Vacancy

N - total number of lattice sites
Qv — formation energy of one vacncy
k — Boltzmann’s constant

T — absolute temperature
e Nv=O0onlyatT=0
e Nv=1atT=infinity
e Nvincreases with T
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Impurity (Alloying)

Interstitial
impurity atom

e Substitutional atoms occupy the lattice sites of host atoms
e Interstitial atoms stay between the host atoms

Line defects

Dislocations
e Edge dislocations: extra half plane of atoms, distortion around dislocation line with
associated elastic energy due to changing distance between atoms.
e Screw dislocations: displaced atoms along dislocation line
e Mixed dislocations

BUF%HS VELDI ! ‘ ‘ ‘




Mechanics and Materials 2016 Benjamin Ding

Plane defects

Grain boundaries
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Other plane defects: phase
boundaries (including
Reading3 13, 3 14 (6th ed) small angle grain boundary surfaces) and stacking faults

Elastic Deformation

General
e Bonds are being pulled apart, linear relationship for most materials (metal), nonlinear for
some (rubber)
e Some materials lose energy during unloading

t energy stored upon loading

a

_ﬂ,.;? ENergy spent per

~ cycle (e.g. as heat

2 9%
29
/<~\ P energy recovered
éy«-"’ upon unloading
E

e Anelasticity — time dependent elastic deformation

.

instant
TECOVery

! t

loading mnloading
time time
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Formulas

1
Stress: 0 = —
Ay

I
Shear stress: T = —
Ay

I—1, 6l

Strain: € =

Lo Lo
. EW
Poissons: v = -

Shear strain: y = tanf

o
Elastic modulus: E = = (Represents stif fness of bonds)

Plastic Deformation

General
e Movement of dislocations
e Permanent deformation



Mechanics and Materials 2016 Benjamin Ding

Yielding

linear  nonlinear

elastic | plastic

loading if unloading

ato=¢,

7y
|
|
I
|
1
total strain }
|
§=EtEg (g !
|
i
1

:’l“)s'"‘ stram elastic strain uE:i
- .
. —. | / Strain |

—  |—o0.002 |

e Yield point — divides between elastic/plastic

e Proportional limit — divides between linear and nonlinear behaviour

e 0.2% proof stress — Approximates yield point with line parallel to linear region drawn from
0.2% strain

Tensile Strength

Work hardening Neckine

Stress

Yield strength and UTS

measure how strong a
material 15

Strain

e  Maximum stress material can withstand
e Higher than yield stress due to work hardening
e Necking happens after this point until fracture
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Ductility

. Bitle: & < ~5-10%
Brittle |l & l

Ductile 4,

;!
elastic strain B
recovered

upon fracture

Stress

elongation (g at fracture)

|
|
l

total sirain (g;) just before fracture

= — — — — —— — — — — —

]

A C ¢

; . -1
e Total plastic strain at fracture: § = %
0

Ao—Af

e Reduction in area:RA = "
0
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True Stress and Strain
Vahid for some metallic matenals up to M
n: strain hardening expoment (= 1, constant)
K- constant

- n Tru
o,=Ke;

—

- - "

Corrected

Engineering

necking starting point
due to
complex

(non-
uniaxial)
stress state

e Area/Length change as material is deformed
F
T4

I dy !
o er=Jde= flfl—izln(i)

0

e o7

e In plotting the true stress vs true strain curve
or=0(1l+¢€)
er =In(1+¢)
After necking, use actual force area and length to calculate true stress and strain as these
equations are no longer valid



Mechanics and Materials 2016 Benjamin Ding

Plastic Instability

Pa

Corrected
Necking starts

iy
i
v
Z |
Engiqeering
\
do
do _ o =) ||
3 de, |
Strain
Uniform Nu:m—unjfﬂn;]u
N
* Total 7

e Before UTS plastic deformation is uniform
e At UTS, necking starts and deformation becomes non-uniform (becomes localised at neck)
e Want to maximise uniform deformation
e Flow stress is the stress needed to cause flow (plastic deformation)
Flow force = Ao (A is the
real area at the moment)
— intension: A ¥;
or A (work hardening)
— if ap A more than A ¥ so
that Ao A, flow not
localised
— if oy AN less than A ¥ so
that Ao, W, flow localised
= instability (necking)
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Resilience and plastic work

Brittle lfjlﬂSl.'.l'[‘ Eﬂe;‘g}r
i recovered if
Ductile p unloaded atD
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i
I
| |
A f,- E}- C Ep \\ C,
U, W, (if unloaded at D)
Strain
¢ Modulus of resilience is the elastic strain energy per volume stored in the material at point
of yielding
€y
U, = f ode
0
When Hooke's law applies
1 o}
Ur = EO'yGy = ﬁ

* Plastic work per volume Wp — work done to cause a plastic strain of €,
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Dislocations & Plastic Deformation

Movement of dislocations

Shear
7 stress

Unit step
of slip

Edge
dislacation
line

>4 St 11t TR E 1433 Mg E1131:
fbisidie fRidifie {Ridibie ififife

e Dislocation shifts across

Slip Systems

12 slip systems ina FCC
structure: 4 x {111} planes & 3
<110> directions on each plane

Direction
of force

Slip plane

d directions
+ (top)

e Dislocation moves on slip plane

e Dislocation density increases with deforming

e Often takes place on close packed planes and directions because they require smallest stress
to slip

e Oneslip plane + one slip direction = slip system
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Slip in single crystals

F (thax) = Fsin¢
Normal to F._ =Fcos A\
slip plane S
Slip
direction

Aj=A/cos ¢

e ¢ is angle between normal to slip plane and force
e Jlisangle between force and slip direction
e Schmidt factor = cos¢cosA

FS

* TR= = ocosgpcosi

®  Tpmax) = 0C0S¢cosA = ocospsing ,A = g - ¢

e The stress required to cause slip is the critical resolve shear stress T¢gss

Benjamin Ding
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Plastic deformation of polycrystalline materials

1 o

a soft grain _

a hard grain

e Grains have their own usually random orientation
e Schmid factor varies, so an average behaviour is observed
e Yield strength is dependent on grain size

Strengthening and Softening

General
e Alloys typically stronger than pure
e Alloys stronger as more deformed
e Finer grain sizes are stronger
e Metals can be softer after exposure at higher temp

e Strengthening occurs by stopping movement of dislocations/increasing difficulty of
movement

Can be achieved by changing composition

b only be reached

Blocking Barriers Saddling with more force

EN o } 2 ; o §

fifesise  isiizde  idfsdize  fifige
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Grain Size Strengthening

Grain boundary

OOOOOOS‘
OC0O000HN
OO000QHO O

Slip plane—s—-——————————

O00O0 OO

Grain A Grain B
Grain boundaries can be a barrier to dislocations
Dislocations may not be able to continue between grains as they are different orientations
Large angle boundaries are more effective

Finer grains = more grain boundaries

Hall-Petch relationship, ay, k,, are constants.

Yield strength increases rapidly with decreasing grain size. May not work at extreme
small/large grain sizes.

ky
0y = 0o+ \/—a
Cu-30 Zn (brass)
Grain size, d (mm)
107! 1072 5% 107
30
200 [— | |
_ 150 -
& 20 G
= =
= £
“5‘.0 =]
g 100 =
4‘;:,' (7]
he) =
— @@
;:J 10 >
50
—_—
UO
0 0
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Solid Solution Strengthening

solute atoms host atoms

Interstitial

l IMSE: Solid =4 =
Solution I

Strengthening :
OOOOOOQ QQQOOQQ

OOCCOS OOOOO000

e Smaller/Larger atoms cause compressive/tensile stress fields around them.
e Atoms ‘saddle’ dislocations
e Makes it harder for dislocations to move

Acy, « /Csorute » Csolute is the concentration of solute atoms
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Strain hardening

yield strength

tensile strength

elongation
Slip pls

Stress

~

<
B
’O@r 'ﬁ:{:\,
% 0 e
W agrain

e Cold working (deforming material at low temp) hardens the material

e Yield strength/UTS increased but elongation reduced with increasing strain
o UWCW = AZ—_A * 100, AO is area before deformation, A is area after deformation
0
¢ In cold working the density of dislocations increases and they interact with each other

making dislocation movement more difficult

® AO-y x v Pdislocation

Precipitation Strengthening

Slip plane

e Fine particles act as obstacles to dislocation
e Dislocations can pass through by looping or cutting through, requires extra stress

1. . . .
e Aoy x = d is the average interparticle spacing
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Softening after cold working

400

Annealing temperature (*F)

Annealing temperature {"C)
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e Recovery

- Heating a cold worked material with moderately elevated T

Benjamin Ding

- Dislocations will rearrange themselves reducing amount of dislocations and lower energy

configuration
- Strength lowered
e Recrystallisation

- Heating to above recrystallization temp creates new grains with low dislocation density from
matrix of high strain energy

- Reduces number

- Decrease in strength and increase in ductility

e Grain growth

of dislocations dramatically

- Grains will become larger with time at elevated temp

- Driven by reduction in grain boundary area
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Fast Fracture

T O < Oy T O=0¢
0 —_—
e
gt b
-
e
o
X s g
Y #
/
g T «___ fractured without any
plastic deformation
How to determine Of?
General

Materials may have cracks in them
Cracks can propagate

- Very fast: sudden fracture

- Slow: fatigue and creep failure
Brittle fracture

- Happens without plastic deformation first, most dangerous
Can strengthen by diverting cracks/consuming energy and increase toughness

Benjamin Ding
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Griffith Criterion

Benjamin Ding

« Energy of a crack

Surface

Gc =2 Vs
vs- SUrface energy per area

atoms with higher
energy due to less bonds

QQQQ eoe
%%

“""’x“‘au

66500

't
%% o]

ova

Repulsion

Interatornic separation r

Met energy Epy

Patential energy &

Attraction
-
&

Attractive energy Ey

Crack (no bonding across it)

Ge = 2y
¥s: surface energy per area

For a piece of material volume V containing a crack with area A with a given stress, total elastic
energy stored is E€V, total crack energy is G.A
For fast propagation, energy released due to cutting bonds > increase in energy of crack due to
larger size.
Griffith Criterion

2Eyq

o= =0
Ta ¢

When stress reaches critical value, an internal crack with size of 2a or surface crack with size of a
becomes unstable and will propagate fast causing fracture.
Surface crack is more dangerous

—_— = |
| |
(o] (o]
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Fracture toughness
e Can rewrite Griffith criterion

oVrma = \/2Ey, = \/EG,

e Criterion for fast fracture

Yovma =K
K = stress intensity factor
Y = constant,Y = 1 for small cracks

JEG. = K, Critical stress intensity factor = fracture toughness

K = K, for fast fracture

Yovrma =K,
c P
o= = o, Critical Fracture Stress
YVma ¢
1 (K:\? - .
=— (—) = a. Critical Crack Size
m\oY

Plane strain fracture toughness

o)

K,

oughn

|

Py

f
i
~

X e e _

Fract une

Flana strain
bahavior

Plane stress

bahavior

o — ————

Thicknass B B H B

e K, changes with B (thickness of plate) when B < B*
e WhenB>B*, K, = constant = K|,
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B*~25
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ch

tensile

K

Mode I -

2

Mode II -

sliding

Kne

Physics of Fast Fracture

Mode IIT -
tearing

Ko

Benjamin Ding

Hm——————==

fa)

For a = 100 gm and

=1pum,K. =20

[ e

Position along X-X'
b)

Smaller the radius of curvature at the crack tip, the sharper the crack.

Stress concentration factor K, =

2-:fpe

a
—200\/2
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Ductile Fracture

Stress

o,

| |

Plastic | I
| |

|

Crack propogation requires plastic deformation and thus the energy
needed is much larger since G, the crack energy. is now 2y, +
Witastic and W, is much larger than 2y, . The fracture toughness,

K. is thus much greater in such materials.

o> ‘:7,\.1
plastic
defor-

mation

occurs

actual stress

Zone

Material with moderate yield strength (metal)
Plastic zone exists near crack tip
Role of plastic deformation

o Stress decreases

o Radius of tip increases (blunting)

Benjamin Ding

o Critical stress intensity increases as the plastic work takes a lot of energy

Higher temperature
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Brittle Fracture

Crack propogation mainly requires breaking bonds and G, the
crack energ oW hich 1s small The fracture
1s thus much smaller in such materials.

Plastic
zone

e Material with high yield strength (ceramic)
e Near the crack tip the plastic zone is very small, plastic deformation not significant
e Lower temperature

Fatigue

General
Maximum
Stress oy

L ] 'lllllll'l'a:

Stress range o = Omax — Omin

Tmax

=
=2
W
=

Stress

ression

E
\

siress Omin
Mean stress o = (Omax + Omin V2

A h Stress amplitude o, = (Omax — Smin)2

e Caused by cyclic stressing which produces slow crack growth resulting in fast fracture
e S-N curve (Stress vs Number of cycles in log scale)
e Cannot fail due to fatigue below a certain fatigue limit
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| I I
e.g_Fe and steels

Fatigue
limmit

Stress amplitude, 8

Fatigue limit: below
which noe fatigue failure

| | |
(o E (v 0° 108 10" 1w* 1® 102
Cycles to failure, N'
{logarithmic scale)

Fatigue strength at a
certain fatigue life

Stress amplitude, §

PTCPRI e Fatigue life, N¢, at a
certain stress level

-atigue strength
at Ny cycles

=

T i
o cyslo Tafigoe. | high cyéle fatigue

I |

| Lo | L |

108 10* Fatigua life 107 N, 108 107 10!
at stress &) N

Cycles to failure, N 'E..g..Al aﬂoys

[logarithmic scale)

Fatigue process

e Cyclic stressing causes slow crack growth
e Cracks nucleate on surface/defect
e Propagation
o Stage 1 - Along planes with high resolved shear stress

o Stage 2 — Perpendicular to applied tensile stress
e Fast fracture

Crack propagation rate

e Applies to high cycle fatigue (>1074)
d

a
o Z=a@Km

e AK =YAovma, Ac = o max — omin
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da '
log(——)=mlog(AK)+log A |
|
I
3 I |
'g : E;“;:_ = Afai™ :
4 i | fast
% | no | fracture
2 | ecrack | 1 '
= | |
growth |
'é £ m
2 | I
| |
- | |
| |
& | 1 |
| |
= | |
z | |
1-@ Region| | Fegian Il Region 111
i Naon- Linear ralationship Unstable
=H| propagating patwaen crack
fatigua log AK and log ﬁ- |  growth
cracks | |
| |
| |
1 1
Stress intensity factor range, AKX (leg scale)
Fatigue life

e Only the life for crack propagation

Benjamin Ding

e Life for crack initiation MAY be significant depending on situation. Assumed to be not

needed as there are always existing defects.

1

A= (An%Aam)

a 1
f = da
a4 YMaq2
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Creep

General

T1T Rupture

Tertiary

Creep strain, e

mn
-]

Instantandous deformation
Time, ¢

¢ Time dependent plastic deformation

e Important at higher temperatures (>0.4 Melting Temp)
e Eventually leads to rupture

Creep Stages

e Three stages

o Primary — Creep rate decreases

o Secondary — Creep rate is constant

o Tertiary — Creep rate increases until fracture
e AtaconstantT, creep rate increases and creep life decreases with increasing stress
e Second state creep rate dependent on stress, n is stress exponent and K1 is constant.

€ = Ko™
e At constant stress, creep rate increases and creep life decreases with increasing temperature
e Second state creep rate dependent on temperature, Qc is activation energy for creep and K1
is constant

. Q
€ = Kexp(~ )
e Therefore the steady state creep rate is
€, = Ka™exp(— g—;)

e nandQcare important
n=1: diffusional creep

(¢]

n=1-2: grain boundary sliding
n=3: viscous glide of dislocations

(¢]

n=4-5: dislocation climb

O
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o Qc can be compared to activation energies for various diffusion processes that may
control creep

Extrapolation methods
e Impractical to test for creep with real temperatures as it may take too long

e Larson-Miller parameter, is constant at a certain stress level (C is a constant)
LMP =T(C +log t,)

Creep resistance
e High melting temp
e High elastic modulus

e large grain size

Mechanical Properties Summary

Stiffness
e Resistance to elastic deformation
e Elastic modulus (E,G, etc)

Strength
e Resistance to plastic deformation
o Yield strength
e Limited by fracture
o Fracture Strength

Ductility
e How much plastic deformation without fracture
e Tensile elongation or area reduction

Toughness
e Resistance to fast fracture
e Fracture toughness (Kc)
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Mechanics
du L MZ dZy
E=— = [— = [
dx U -fo 2E1dx’ where M Eldx2

Strain = Change in Displacement

_du, | du
Yoy = Ty dy
Shear Strain(angle)

E =

™9

Hooke's Law

1+v
€xy = E Oy

Hooke's Law (Shear)

1
U= Eo-xxexx
Strain Energy Density

[ [ 68U dxdy = [ [ P.6u; + P,6u, ds
+ [ [ B.du, + By 6u, dxdy
=0
Virtual Work

v dv
ap~ “am
Castigliano's Theorem

=0

Strain Energy in beam

1
V= EP(S =mg(h + &) (massless)

1
V= §P6 =mgh + (m + m.)gd (mass)

Strain energy in impact loading

b EAS o _PL
TOATTIT 0T aE

V = mgh+ (m+m.)dg

P = 1+ |1+2h EA
- (mgL)

_mgL (mgL)2 (mgL)
=2 +\/[ ga) T

Mass falling onto massless flange

5= P13
~ 48EI

P = 1+ |1+ 96EIh
=mg mgL3

Mass falling onto a massless beam

n2m?
Por = — Bl
— asin
y = Asin—

Critical load and buckling mode (central load)
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m | P 1
2 [Py

Deflection with eccentric load

P ec L P
O'max=Z 1+r—zsec Z ﬁ
P nw’E
Omax =Z: I ,fore
rZ

=0, failure whenP =P,

I
r= |—
m

Secant Formula

Benjamin Ding

_ MinaxC
Oxmax = i

Flexure

0-1_0-3>0-Y
01 > 0y > 03

Oy
Max shear stress > >

Tresca Criterion(more conversative)

o, = /012 + 0% — 0,0,

Von mises Criterion for plane stress, (most accurate)



